Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cancer Sci ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641866

RESUMO

Aging is a life phenomenon that occurs in most living organisms and is a major risk factor for many diseases, including cancer. Cellular senescence is a cellular trait induced by various genomic and epigenetic stresses. Senescent cells are characterized by irreversible cell growth arrest and excessive secretion of inflammatory cytokines (senescence-associated secretory phenotypes, SASP). Chronic tissue microinflammation induced by SASP contributes to the pathogenesis of a variety of age-related diseases, including cancer. Senolysis is a promising new strategy to selectively eliminate senescent cells in order to suppress chronic inflammation, suggesting its potential use as an anticancer therapy. This review summarizes recent findings on the molecular basis of senescence in cancer cells and senolysis.

2.
Mol Metab ; 84: 101943, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657734

RESUMO

OBJECTIVES: Adipose tissue is an endocrine and energy storage organ composed of several different cell types, including mature adipocytes, stromal cells, endothelial cells, and a variety of immune cells. Adipose tissue aging contributes to the pathogenesis of metabolic dysfunction and is likely induced by crosstalk between adipose progenitor cells (APCs) and immune cells, but the underlying molecular mechanisms remain largely unknown. In this study, we revealed the biological role of p16high senescent APCs, and investigated the crosstalk between each cell type in the aged white adipose tissue. METHODS: We performed the single-cell RNA sequencing (scRNA-seq) analysis on the p16high adipose cells sorted from aged p16-CreERT2/Rosa26-LSL-tdTomato mice. We also performed the time serial analysis on the age-dependent bulk RNA-seq datasets of human and mouse white adipose tissues to infer the transcriptome alteration of adipogenic potential within aging. RESULTS: We show that M2 macrophage-derived TGF-ß induces APCs senescence which impairs adipogenesis in vivo. p16high senescent APCs increase with age and show loss of adipogenic potential. The ligand-receptor interaction analysis reveals that M2 macrophages are the donors for TGF-ß and the senescent APCs are the recipients. Indeed, treatment of APCs with TGF-ß1 induces senescent phenotypes through mitochondrial ROS-mediated DNA damage in vitro. TGF-ß1 injection into gonadal white adipose tissue (gWAT) suppresses adipogenic potential and induces fibrotic genes as well as p16 in APCs. A gWAT atrophy is observed in cancer cachexia by APCs senescence, whose induction appeared to be independent of TGF-ß induction. CONCLUSIONS: Our results suggest that M2 macrophage-derived TGF-ß induces age-related lipodystrophy by APCs senescence. The TGF-ß treatment induced DNA damage, mitochondrial ROS, and finally cellular senescence in APCs.

3.
Nat Aging ; 4(3): 319-335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388781

RESUMO

Plasma membrane damage (PMD) occurs in all cell types due to environmental perturbation and cell-autonomous activities. However, cellular outcomes of PMD remain largely unknown except for recovery or death. In this study, using budding yeast and normal human fibroblasts, we found that cellular senescence-stable cell cycle arrest contributing to organismal aging-is the long-term outcome of PMD. Our genetic screening using budding yeast unexpectedly identified a close genetic association between PMD response and replicative lifespan regulations. Furthermore, PMD limits replicative lifespan in budding yeast; upregulation of membrane repair factors ESCRT-III (SNF7) and AAA-ATPase (VPS4) extends it. In normal human fibroblasts, PMD induces premature senescence via the Ca2+-p53 axis but not the major senescence pathway, DNA damage response pathway. Transient upregulation of ESCRT-III (CHMP4B) suppressed PMD-dependent senescence. Together with mRNA sequencing results, our study highlights an underappreciated but ubiquitous senescent cell subtype: PMD-dependent senescent cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Longevidade , Proteína Supressora de Tumor p53/genética , Fibroblastos , Membrana Celular/metabolismo , Senescência Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Breast Cancer Res Treat ; 204(3): 453-463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180699

RESUMO

BACKGROUND: Invasive lobular carcinoma (ILC) is distinct from invasive ductal carcinoma (IDC) in terms of their hormonal microenvironments that may require different therapeutic strategies. We previously reported that selective estrogen receptor modulator (SERM) function requires F-box protein 22 (Fbxo22). Here, we investigated the role of Fbxo22 as a potential biomarker contributing to the resistance to endocrine therapy in ILC. METHODS: A total of 302 breast cancer (BC) patients including 150 ILC were recruited in the study. Fbxo22 expression and clinical information were analyzed to elucidate whether Fbxo22 negativity could be a prognostic factor or there were any correlations among clinical variables and SERM efficacy. RESULTS: Fbxo22 negativity was significantly higher in ILC compared with IDC (58.0% vs. 27.0%, P < 0.001) and higher in postmenopausal patients than premenopausal patients (64.1% vs. 48.2%, P = 0.041). In the ILC cohort, Fbxo22-negative patients had poorer overall survival (OS) than Fbxo22-positive patients, with 10-year OS rates of 77.4% vs. 93.6% (P = 0.055). All patients treated with SERMs, Fbxo22 negativity resulted in a poorer outcome, with 10-year OS rates of 81.3% vs. 92.3% (P = 0.032). In multivariate analysis regarding recurrence-free survival (RFS) in ILC patients, Fbxo22 status was independently predictive of survival as well as lymph node metastasis. CONCLUSION: Fbxo22 negativity significantly impacts on survival in BC patients with IDC and ILC, and the disadvantage was enhanced among ILC postmenopausal women or patients treated with SERMs. The findings suggest that different therapeutic strategies might be needed according to the different histopathological types when considering adjuvant endocrine therapy.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Lobular/patologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Carcinoma Ductal de Mama/patologia , Resultado do Tratamento , Microambiente Tumoral
5.
Cell Rep ; 42(9): 113098, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37714156

RESUMO

Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA , Proteínas Adaptadoras de Transdução de Sinal/genética
6.
Toxicol Appl Pharmacol ; 468: 116531, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088304

RESUMO

Cancer survivors who received chemotherapy, such as the anthracycline doxorubicin (DOX), have an increased risk of developing complications later in life, including the development of chronic metabolic diseases. Although the etiology of this increased risk for late metabolic complications in cancer survivors is poorly understood, a causal role of therapy-induced senescent cells has been suggested. To study the role of cellular senescence in chemotherapy-induced metabolic complications, young adult female low-density lipoprotein receptor-deficient (Ldlr-/-)-p16-3MR mice, in which p16Ink4a-positive (p16Ink4a+) senescent cells can be genetically eliminated, were treated with four weekly injections of DOX (2.5 mg/kg) followed by a high-fat high-cholesterol diet for 12 weeks. While DOX treatment induced known short-term effects, such as reduction in body weight, gonadal fat mass, and adipose tissue inflammation, it was not associated with significant long-term effects on glucose homeostasis, hepatic steatosis, or atherosclerosis. We further found no evidence of DOX-induced accumulation of p16Ink4a+-senescent cells at 1 or 12 weeks after DOX treatment. Neither did we observe an effect of elimination of p16Ink4a+-senescent cells on the development of diet-induced cardiometabolic complications in DOX-treated mice. Other markers for senescence were generally also not affected except for an increase in p21 and Cxcl10 in gonadal white adipose tissue long-term after DOX treatment. Together, our study does not support a significant role for p16Ink4a+-senescent cells in the development of diet-induced cardiometabolic disease in young adult DOX-treated female Ldlr-/- mice. These findings illustrate the need of further studies to understand the link between cancer therapy and cardiometabolic disease development in cancer survivors.


Assuntos
Doenças Cardiovasculares , Inibidor p16 de Quinase Dependente de Ciclina , Camundongos , Feminino , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/farmacologia , Senescência Celular , Doxorrubicina/toxicidade , Antraciclinas/farmacologia
7.
Science ; 378(6616): 192-201, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227993

RESUMO

We engineered an ultrasensitive reporter of p16INK4a, a biomarker of cellular senescence. Our reporter detected p16INK4a-expressing fibroblasts with certain senescent characteristics that appeared shortly after birth in the basement membrane adjacent to epithelial stem cells in the lung. Furthermore, these p16INK4a+ fibroblasts had enhanced capacity to sense tissue inflammation and respond through their increased secretory capacity to promote epithelial regeneration. In addition, p16INK4a expression was required in fibroblasts to enhance epithelial regeneration. This study highlights a role for p16INK4a+ fibroblasts as tissue-resident sentinels in the stem cell niche that monitor barrier integrity and rapidly respond to inflammation to promote tissue regeneration.


Assuntos
Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Células Epiteliais , Fibroblastos , Genes Reporter , Pulmão , Regeneração , Nicho de Células-Tronco , Humanos , Membrana Basal/citologia , Membrana Basal/fisiologia , Biomarcadores/metabolismo , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Pulmão/patologia , Pulmão/fisiologia , Células Epiteliais/fisiologia , Nicho de Células-Tronco/fisiologia
8.
Breast Cancer ; 29(6): 1076-1087, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35882754

RESUMO

BACKGROUND: Sacituzumab govitecan is an antibody-drug conjugate that delivers SN-38, an active metabolite of irinotecan, to the target molecule, trophoblast cell-surface antigen 2 (Trop-2). It is a promising drug for triple-negative breast cancer and is anticipated to be effective for luminal breast cancer. The efficacy of the agent relies on the expression of Trop-2 rather than its intracellular function. However, conditions that alter the Trop-2 expression have not been well investigated. METHODS: We tested a range of clinically related treatments for their effect on Trop-2 expression in cultured breast cancer cell lines. RESULTS: The expression level of Trop-2 differed among cell lines, independent of their subtypes, and was highly variable on treatment with kinase inhibitors, tamoxifen, irradiation, and chemotherapeutic agents including irinotecan. While inhibitors of AKT, RSK, and p38 MAPK suppressed the Trop-2 expression, tamoxifen treatment significantly increased Trop-2 expression in luminal cancer cell lines. Notably, luminal cancer cells with acquired resistance to tamoxifen also exhibited higher levels of Trop-2. We identified transcription factor EB (TFEB) as a possible mechanism underlying tamoxifen-induced elevation of Trop-2 expression. Tamoxifen triggers dephosphorylation of TFEB, an active form of TFEB, and the effect of tamoxifen on Trop-2 was prevented by depletion of TFEB. A luciferase reporter assay showed that Trop-2 induction by TFEB was dependent on a tandem E-box motif within the Trop-2 promoter region. CONCLUSIONS: Overall, these results suggest that the effectiveness of sacituzumab govitecan could be altered by concomitant treatment and that tamoxifen could be a favorable agent for combined therapy.


Assuntos
Neoplasias da Mama , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Camptotecina/farmacologia , Imunoconjugados/farmacologia , Irinotecano/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
9.
Neurosci Res ; 181: 55-65, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35381300

RESUMO

Systemic nicotine administration regulates neuronal activities in mouse auditory cortex. How nicotine regulates the spread of the activities across auditory cortical areas is not well known. We investigate this using flavoprotein fluorescence imaging. 20 kHz amplitude-modulated (AM) tones increased the peak intensity of flavoprotein fluorescence in presumptive primary auditory cortex (A1). 5 kHz AM tones activated at least three cortical areas, which are presumably A1, anterior auditory field, and secondary auditory cortex. Nicotine enlarged tone-activated cortical areas and enhanced both 20 kHz and 5 kHz tone-evoked fluorescence intensities at their respective, optimal frequency peak sites and at non-optimal frequency peak sites in A1. The extent of this enhancement was greater at non-optimal frequency sites than at optimal frequency sites. A cortical injection of dihydro-ß-erythroidine, an inhibitor of nicotinic acetylcholine receptors composed of α4 and ß2-subunits (α4ß2*-nAChRs), blocked the enhancement of fluorescence intensity at the peak sites but did not appear to block the enlargement of activated areas. These results suggest that nicotine exposure activates cortical α4ß2*-nAChRs to enhance tone-evoked local neuronal activities at an optimal frequency site. The nicotine-induced enlargement of a tone-activated area may depend on the nicotinic enhancement of cortical inputs or other activities.


Assuntos
Córtex Auditivo , Receptores Nicotínicos , Animais , Córtex Auditivo/fisiologia , Flavoproteínas , Camundongos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica
10.
ACS Omega ; 7(15): 12795-12802, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474768

RESUMO

Inorganic pigments have been widely used due to their low cost of production, strong hiding power, and chemical resistance; nevertheless, they have limited hue width and chromaticity. To eliminate these disadvantages, we herein propose the use of an ingenious biotemplate technique to produce Al-enriched biogenic iron oxide (BIOX) materials. Spectrophotometric color analysis showed that high levels of Al inclusion on heat-treated BIOX samples produced heightened yellowish hues and lightness. The Al-enriched BIOX sheaths exhibited a stable tubular structure and excellent thermal stability of color tones after heating at high temperatures and repetitive heat treatments. Ultrastructural analysis and mechanical destruction experiments revealed that the highly chromatic orange-hue of these pigments are ascribed probably to an ingenious cylindrical nanocomposite architecture composed of putative Fe-included low crystalline Al oxide regions and hematite particles embedded therein. The present work therefore demonstrates that the bioengineered material can serve as an epochal orange-hued inorganic pigment with low toxicity and marked thermostability that should meet large industrial demand.

11.
BMC Med Genomics ; 15(1): 32, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183184

RESUMO

BACKGROUND: The use of whole-genome sequencing in clinical practice has revealed variable genomic characteristics across cancer types, one of which is whole-genome doubling (WGD), which describes the duplication of a complete set of chromosomes. Yet it is relatively rare in prostate cancer and no such case has ever been reported in Japanese patients. CASE PRESENTATION: A 54-year-old patient with prostatic adenocarcinoma with bone and lymph node metastases was started on androgen-deprivation therapy. As the prostate cancer turned castration-resistant, multimodal therapies including taxane- and platinum-based chemotherapy, androgen-receptor antagonist inhibitors, radiotherapy and radium-233 were introduced. Good controls of serum prostate-specific antigen (PSA) level and bone metastases were achieved for more than 13 years since after the initial treatment. During the treatment, a metastatic lymph node biopsy was performed to confirm the tumor histology, and spinal decompression surgery were performed for spinal compression due to lumber vertebral metastases. The immunohistochemical analysis identified PSA and androgen receptor positive tumor cells in both metastatic lesions, while no variable cancer cells were detected in the prostate on second biopsy. Whole-genome sequencing was performed on the biopsied metastatic lymph node in search for another possible treatment and it revealed that the tumor had WGD and CDK12 mutation. The WGD-positive tumor cells contained large and polymorphic nucleus, presumably reflecting on the ploidy abnormality of the chromosomes. CONCLUSIONS: This report is the first case of a Japanese patient presenting with WGD, who survived more than 13 years with multimodal chemotherapies and radiotherapies.


Assuntos
Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/uso terapêutico , Neoplasias Ósseas/secundário , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
12.
Nucleic Acids Res ; 49(21): 12268-12283, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850117

RESUMO

DNA lesions impact on local transcription and the damage-induced transcriptional repression facilitates efficient DNA repair. However, how chromatin dynamics cooperates with these two events remained largely unknown. We here show that histone H2A acetylation at K118 is enriched in transcriptionally active regions. Under DNA damage, the RSF1 chromatin remodeling factor recruits HDAC1 to DSB sites. The RSF1-HDAC1 complex induces the deacetylation of H2A(X)-K118 and its deacetylation is indispensable for the ubiquitination of histone H2A at K119. Accordingly, the acetylation mimetic H2A-K118Q suppressed the H2A-K119ub level, perturbing the transcriptional repression at DNA lesions. Intriguingly, deacetylation of H2AX at K118 also licenses the propagation of γH2AX and recruitment of MDC1. Consequently, the H2AX-K118Q limits DNA repair. Together, the RSF1-HDAC1 complex controls the traffic of the DNA damage response and transcription simultaneously in transcriptionally active chromatins. The interplay between chromatin remodelers and histone modifiers highlights the importance of chromatin versatility in the maintenance of genome integrity.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Epigênese Genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Transativadores/genética , Acetilação , Animais , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Células HEK293 , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Ligação Proteica , Interferência de RNA , Transativadores/metabolismo , Ubiquitinação
13.
Bioorg Med Chem ; 52: 116500, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801826

RESUMO

The accumulation of epigenetic alterations is one of the major causes of tumorigenesis. Aberrant DNA methylation patterns cause genome instability and silencing of tumor suppressor genes in various types of tumors. Therefore, drugs that target DNA methylation-regulating factors have great potential for cancer therapy. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) is an essential factor for DNA methylation maintenance. UHRF1 is overexpressed in various cancer cells and down-regulation of UHRF1 in these cells reactivates the expression of tumor suppressor genes, thus UHRF1 is a promising target for cancer therapy. We have previously shown that interaction between the tandem Tudor domain (TTD) of UHRF1 and DNA ligase 1 (LIG1) di/trimethylated on Lys126 plays a key role in the recruitment of UHRF1 to replication sites and replication-coupled DNA methylation maintenance. An arginine binding cavity (Arg-binding cavity) of the TTD is essential for LIG1 interaction, thus the development of inhibitors that target the Arg-binding cavity could potentially repress UHRF1 function in cancer cells. To develop such an inhibitor, we performed in silico screening using not only static but also dynamic metrics based on all-atom molecular dynamics simulations, resulting in efficient identification of 5-amino-2,4-dimethylpyridine (5A-DMP) as a novel TTD-binding compound. Crystal structure of the TTD in complex with 5A-DMP revealed that the compound stably bound to the Arg-binding cavity of the TTD. Furthermore, 5A-DMP inhibits the full-length UHRF1:LIG1 interaction in Xenopus egg extracts. Our study uncovers a UHRF1 inhibitor which can be the basis of future experiments for cancer therapy.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , DNA Ligase Dependente de ATP/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Piridinas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Xenopus
14.
Trends Genet ; 37(11): 1012-1027, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34120771

RESUMO

DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.


Assuntos
Metilação de DNA , Neoplasias , Ilhas de CpG/genética , Metilação de DNA/genética , Estudo de Associação Genômica Ampla , Humanos , Neoplasias/genética , Neoplasias/metabolismo
15.
Cancer Sci ; 112(7): 2739-2752, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33939241

RESUMO

DNA damage induces transcriptional repression of E2F1 target genes and a reduction in histone H3-Thr11 phosphorylation (H3-pThr11 ) at E2F1 target gene promoters. Dephosphorylation of H3-pThr11 is partly mediated by Chk1 kinase and protein phosphatase 1γ (PP1γ) phosphatase. Here, we isolated NIPP1 as a regulator of PP1γ-mediated H3-pThr11 by surveying nearly 200 PP1 interactor proteins. We found that NIPP1 inhibits PP1γ-mediated dephosphorylation of H3-pThr11 both in vivo and in vitro. By generating NIPP1-depleted cells, we showed that NIPP1 is required for cell proliferation and the expression of E2F1 target genes. Upon DNA damage, activated protein kinase A (PKA) phosphorylated the NIPP1-Ser199 residue, adjacent to the PP1 binding motif (RVxF), and triggered the dissociation of NIPP1 from PP1γ, leading to the activation of PP1γ. Furthermore, the inhibition of PKA activity led to the activation of E2F target genes. Statistical analysis confirmed that the expression of NIPP1 was positively correlated with E2F target genes. Taken together, these findings demonstrate that the PP1 regulatory subunit NIPP1 modulates E2F1 target genes by linking PKA and PP1γ during DNA damage.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dano ao DNA , Fator de Transcrição E2F1/genética , Endorribonucleases/metabolismo , Histonas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sistemas CRISPR-Cas , Proliferação de Células , Células Cultivadas , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Endorribonucleases/deficiência , Endorribonucleases/isolamento & purificação , Repressão Epigenética , Regulação da Expressão Gênica , Humanos , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/isolamento & purificação , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Receptores de Neuropeptídeo Y/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Raios Ultravioleta
16.
Autophagy ; 17(11): 3776-3793, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706682

RESUMO

Preconditioning with a mild stressor such as fasting is a promising way to reduce severe side effects from subsequent chemo- or radiotherapy. However, the underlying mechanisms have been largely unexplored. Here, we demonstrate that the TP53/p53-FBXO22-TFEB (transcription factor EB) axis plays an essential role in this process through upregulating basal macroautophagy/autophagy. Mild stress-activated TP53 transcriptionally induced FBXO22, which in turn ubiquitinated KDM4B (lysine-specific demethylase 4B) complexed with MYC-NCOR1 suppressors for degradation, leading to transcriptional induction of TFEB. Upregulation of autophagy-related genes by increased TFEB dramatically enhanced autophagic activity and cell survival upon following a severe stressor. Mitogen-induced AKT1 activation counteracted this process through the phosphorylation of KDM4B, which inhibited FBXO22-mediated ubiquitination. Additionally, fbxo22-/- mice died within 10 h of birth, and their mouse embryonic fibroblasts (MEFs) showed a lowered basal autophagy, whereas FBXO22-overexpressing mice were resistant to chemotherapy. Taken together, these results suggest that TP53 upregulates basal autophagy through the FBXO22-TFEB axis, which governs the hormetic effect in chemotherapy.Abbreviations: BBC3/PUMA: BCL2 binding component 3; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; ChIP-seq: chromatin immunoprecipitation followed by sequencing; DDB2: damage specific DNA binding protein 2; DRAM: DNA damage regulated autophagy modulator; ESR/ER: estrogen receptor 1; FMD: fasting mimicking diet; HCQ: hydroxychloroquine; KDM4B: lysine-specific demethylase 4B; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; NCOR1: nuclear receptor corepressor 1; SCF: SKP1-CUL-F-box protein; SQSTM1: sequestosome 1; TFEB: transcription factor EB.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas F-Box/metabolismo , Hormese , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Células Cultivadas , Proteínas F-Box/fisiologia , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Ubiquitinação
17.
Biomater Sci ; 9(1): 199-211, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33174545

RESUMO

All human tissues experience aging that eventually causes organ dysfunction and disease. Cellular senescence was discovered in fibroblasts cultured in vitro. In adults, it is a primary defense mechanism against cancer, but also a major contributor to lifespan limits and disorders associated with aging. To assess how human blood vessels change in an aged environment, we developed an elementary tissue model-on-a-chip that comprises an in vitro three-dimensional model of a blood vessel embedded in a collagen gel with young or senescent skin fibroblasts. We found that senescent fibroblasts mechanically altered the surrounding extracellular matrix by exerting excessive traction stress. We then found that senescent fibroblasts induced sprouting angiogenesis of a microvessel via their senescence-associated secretory phenotype (SASP). Finally, we gathered evidence that the mechanical changes of the microenvironment play a role in sustaining SASP-induced angiogenesis. The model proved useful in monitoring morphological changes in blood vessels induced by senescent fibroblasts while controlling the proportion of senescent cells, and enabled the study of SASP inhibitors, a class of drugs useful in aging and cancer research.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias , Idoso , Envelhecimento , Senescência Celular , Fibroblastos , Humanos , Microambiente Tumoral
18.
ACS Omega ; 5(42): 27287-27294, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134691

RESUMO

Biogenic microtubular iron oxides (BIOXs) derived from Leptothrix spp. are known as promising multifunctional materials for industrial applications such as ceramic pigments and catalyst carriers. Here, we report unprecedented BIOX products with additive depositions of various metallic elements prepared by a newly devised "two-step" method using an artificial culture system of Leptothrix cholodnii strain OUMS1; the method comprises a biotic formation of immature organic sheaths and subsequent abiotic deposition of Fe and intended elements on the sheaths. Chemical composition ratios of the additional elements Al, Zr, and Ti in the respective BIOXs were arbitrarily controllable depending on initial concentrations of metallic salts added to reaction solutions. Raman spectroscopy exemplified an existence of Fe-O-Al linkage in the Al-containing BIOX matrices. Time-course analyses revealed the underlying physiological mechanism for the BIOX formation. These results indicate that our advanced method can contribute greatly to creations of innovative bioderived materials with improved functionalities.

19.
Cell Metab ; 32(5): 814-828.e6, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32949498

RESUMO

Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Animais , Linhagem Celular , Senescência Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Análise de Célula Única
20.
PLoS One ; 15(8): e0237814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804975

RESUMO

Schaaf-Yang syndrome (SYS) is a neurodevelopmental disorder caused by truncating variants in the paternal allele of MAGEL2, located in the Prader-Willi critical region, 15q11-q13. Although the phenotypes of SYS overlap those of Prader-Willi syndrome (PWS), including neonatal hypotonia, feeding problems, and developmental delay/intellectual disability, SYS patients show autism spectrum disorder and joint contractures, which are atypical phenotypes for PWS. Therefore, we hypothesized that the truncated Magel2 protein could potentially produce gain-of-function toxic effects. To test the hypothesis, we generated two engineered mouse models; one, an overexpression model that expressed the N-terminal region of Magel2 that was FLAG tagged with a strong ubiquitous promoter, and another, a genome-edited model that carried a truncating variant in Magel2 generated using the CRISPR/Cas9 system. In the overexpression model, all transgenic mice died in the fetal or neonatal period indicating embryonic or neonatal lethality of the transgene. Therefore, overexpression of the truncated Magel2 could show toxic effects. In the genome-edited model, we generated a mouse model carrying a frameshift variant (c.1690_1924del; p(Glu564Serfs*130)) in Magel2. Model mice carrying the frameshift variant in the paternal or maternal allele of Magel2 were termed Magel2P:fs and Magel2M:fs, respectively. The imprinted expression and spatial distribution of truncating Magel2 transcripts in the brain were maintained. Although neonatal Magel2P:fs mice were lighter than wildtype littermates, Magel2P:fs males and females weighed the same as their wildtype littermates by eight and four weeks of age, respectively. Collectively, the overexpression mouse model may recapitulate fetal or neonatal death, which are the severest phenotypes for SYS. In contrast, the genome-edited mouse model maintains genomic imprinting and distribution of truncated Magel2 transcripts in the brain, but only partially recapitulates SYS phenotypes. Therefore, our results imply that simple gain-of-function toxic effects may not explain the patho-mechanism of SYS, but rather suggest a range of effects due to Magel2 variants as in human SYS patients.


Assuntos
Antígenos de Neoplasias/genética , Mutação/genética , Proteínas/genética , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Peso Corporal , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Edição de Genes , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linhagem , Fenótipo , Proteínas/química , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA